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Abstract.
We present expressions for absolute and relative errors in individual components of the so-

lution to systems of linear equations. We consider three kinds of linear systems: non-singular,
underdetermined of full row rank, and least squares of full column rank. No assumptions regarding
the structure or distribution of the perturbations are required.

Our expressions for component-wise relative errors allow the following conclusions: For any
linear system there is at least one solution component whose sensitivity to perturbations is propor-
tional to the condition number of the matrix; but - depending on the relation between right-hand
side and matrix - there may exist components that are much better conditioned. For a least squares
problem, the sensitivity of the components also depends on the right-hand side and may be as high
as the square of the condition number. Least sqaares problems are therefore always more receptive
to ill-conditioning than linear systems.

In addition, we show that the component-wise relative errors for linear systems are reduced by
column scaling only if column scaling manages to reduce the perturbations. Regarding underde-
termined linear systems of full column rank, the problem of finding the minimal-norm solution can
be formulated so that the same analysis as for least squares problems is applicable here as well.

Finally, we define component-wise condition numbers that measure the sensitivity of the so-
lution components to perturbations. They have simple geometric interpretations and can be com-
puted and estimated as efficiently as the conventional condition numbers.
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1 Introduction

Most people would probably believe that there is nothing left to be done when it comes to error
analysis for the solution of linear systems of equations and linear least squares problems, especially
where perturbation analysis without regard to a particular algorithm is concerned. So, why yet
another paper on the subject?

We want to demonstrate that a careful perturbation analysis is capable of providing a realistic
assessment of the error and reliable measures of the sensitivity of the solution to perturbations in
the data.

In particular, we derive expressions for the errors in individual components of the solution vector.
These expressions give rise to realistic and efficiently computable error bounds. The derivations of
the error expressions require no restrictions on the structure or distribution of the perturbations.
Without any knowledge of the 4nderlying algorithm, we can therefore obtain a great deal of infor-
mation about the sensitivity of individual solution components to perturbations in the data - much
more, in fact, than what is provided by conventional perturbation results.

1.1 Motivation

Consider the solution of a system of linear equations Ax = b with non-singular coefficient matrix A.
The computed solution i, which is usually different from the true solution x, can be viewed as
the true solution to a perturbed system (A + F)" = b + f. Let's assume we do not know which
algorithm was used for the computation of i, so we have no knowledge about the structure of the
perturbations F and f.

Only very infrequently, e.g. [4, 15], does one try to assess the error in individual solution
components. The conventional way of assessing the error in i, as compared to the true solution x,
is to estimate an upper bound on the norm-based' relative error 112- xII/Iixlz. The most commonly
used first-order bound is

li -ni x1 (A)(pA + Pb),
1lXil

where the condition number ,c(A) = JAil IIA-111 > I acts as an amplifier for the relative perturbations
in the data PA = IIFiI/lAl and Pb = lfJh/ilbJl. This norm-based bound has led to a rule of thumb:
If, for instance, ic(A) is about I0', and the size of the relative perturbations is about I0 - , then the
computed solution i can be expected to be accurate to 7 - 3 = 4 significant digits.

In many situations this type of error assessment is just fine - unless, however, the individual
components of the solution have physical significance as, for example, in statistical applications [21).
Consider the linear system Ax = b, where

' ') (' () o
Suppose the computed solution is 2 = i where c is a very small positive number. Then i can 0

be viewed as the true solution to the perturbed system o1( 0) (1
A+ + = A 0,n/+A+F=A=Q 0) b"=() "4A P

'The following inequalities hold for any vector p-norm and induced matrix norm; see Section 2 in [12), for instance. tty Codes
In tI is paper we use the two-norm.
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Because A is the identity matrix, t(A) = 1, and the above error bound tells us that P - xIl/IzXIIE.
So the error in the solution seems to be no more than the error in the data, which is all we are
entitled to. However, the second component of the computed solution has component-wise relative
error

2

i2 -2 - 0

and is thus totally wrong. Therefore, a small bound on the norm-based error does not guarantee
accuracy in individual components of the computed solution.

Of course, you could argue now that this should have been anticipated. Since X2 is zero, hence
small in magnitude, one should not expect to compute it correctly in the first place. Accordingly,
we could account for it by estimating the error in each component i of tb computed solution via

Iii - xiI < " - '11 (A) (PA + Pb),

provided zi $ 0. The amplifiers for the relative perturbations are now the condition number, as
well as the size of an individual component relative to the whole solution. This modification yields
a correct assessment for the errors in individual solution components of the above example.

Unfortunately, we have not really fixed the problem. The condition number x(A) can still
severely over estimate the error in some solution components, as the following 4 x 4 linear system
demonstrates.

10.4919 0.1112 -0.6234 -0.6228 (0.4351 '
-0.5050 -0.6239 0.0589 0.0595 ( -0.1929

'A 0.5728 -0.0843 0.7480 0.7483 b 0.6165

-0.4181 0.7689 0.2200 0.2204 / -0.8022

The first three columns of A are nearly orthogonal while the last two columns are almost identical.
Both the two-norm condition number 1C2(A) and Skeel's condition number [19] are larger than 103.
Note that the matrix is not ill-scaled.

But the 'component-wise condition numbers' that we will introduce in this paper turn out to be

< 1.1, < 1.1, > 103, > 103.

This means that the first two components of x are well-conditioned and the remaining two are
ill-conditioned, regardless of the perturbations. To illustrate this, compare the 'exact' solution
computed with 16-digit arithmetic

X = (1.000075414240576 -. 5000879795933286 -. 0242511388797165 .02624513955005858),

with the solution computed with 4-digit arithmetic, which can be viewed as the solution to a per-
turbed problem,

T = (1.000 -. 5003 -. 0589 .06090).

As nredicted by our component-wise condition numbers, the first two components are accurate to
almost four digits, whercas the last two have no accuracy whatsoever. As far as we know no other
existing condition numbers can predict the well-conditioning of the first two components of this
system.

Therefore, the conventional norm-based bounds are apparently not able to estimate the accuracy
of individual components orrr'ctly. We hope to %.ave iiow prviJdd enough motivation for the need
to study component-wise relative errors and the sensitivity to perturbations of individual solution
components.

2 Whenever xi = 0 while f, * 0, the component-wise relative error has ii instead of x, in the denominator.
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1.2 Overview

Given a linear system Ax = b of full column rank and a perturbed system (A + F)2 = b + f, we
derive expressions for the error in individual components of the computed solution 2. Our work is
more general than that of Skeel [19] on component-wise perturbations and that of Stewart [22] on
stochastic perturbations because we make no assumptions about the perturbations F and f, either
their size, structure or distribution.

In particular, we show that there is always one component of the solution vector whose sensitivity
to relative perturbations is proportional to the condition number of the matrix; but - depending
on tla right-hand side - there may exist components that are much better conditioned. Therefore
the conventional upper bounds on norm-wise relative errors are as tight as possible, and if they are
pessimistic it is because they represent an inadequate means of measuring the error.

We derive condition numbers for individual components for the solution of a linear system, which
we call 'component-wise condition numbers'. We thus associate with a linear system Ax = b not a
single condition number but a set of condition numbers. Our work, although developed indepen-
dently, can therefore be considered a continuation of Stewart's work on collinearity in regression
problems [211. The singular value decomposition, often used to determine the conventional condi-
tion number of a matrix, provides a basis for the column space but does not relate this basis to
the columns of the matrix. In contrast, Stewart's condition numbers are designed to expose the
most linearly dependent columns of a matrix. They are embedded in our component-wise condi-
tion numbers, whose purpose is not only to recognise linearly dependent columns but also to reflect
the relationship between matrix and right-hand side. We provide a geometric interpretation for
Stewart's condition numbers and demonstrate that they are 'inherent' in the inverse of the matrix.

All of our results also hold for the solution of linear least squares problems miny hjAy - bhi of full
column rank. The set of component-wise condition numbers for a least squares problem contains
those for a linear system as a subset, hence the sensitivity of some solution components may be much
lower than the condition number. In particular, we show that there is a component of the solution
vector whose sensitivity to relative perturbations equals at least the product of condition number
and tan 0, where 0 is the angle between the right-hand side and the column space of the matrix; the
sensitivity can be as high as the product of tan0 and the square of the condition number. Least
squares problems are therefore always more receptive to ill-conditioning than linear systems.

In addition, we show that the component-wise relative errors for linear systems are reduced by
column scaling only if column scaling manages to reduce the perturbations. Regarding underdeter-
mined linear systems of full column rank, the problem of finding the minimal-norm solution can be
formulated so that the same analysis as for least squares problems is applicable.

The expressions for the errors in the solution of least squares problems and underdetermined
linear systems can be used, for instance, to obtain perturbation results for the computation of left
and right inverses of matrix.

In Section 2 we present the basic ideas contained in this paper. We derive them from first
principles, keeping technical details to a minimum. Section 3 and Appendix 2 contain a detailed
perturbation theory for the solution of linear systems of full column rank, and Section 4 extends
it to the solution of least squares problems of full column rank. The treatment -f full rank Icast
squares problems is extended to the solution of underdetermined linear systems of full row rank
in Section 5. In Section 6 we discuss the efficient computation and estimation of component-wise
condition numbers. In particular, we show how to compute them via updating QR decompositions,
and how to estimate them by means of conventional condition numbers estimators. A short summary
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of the paper is followed by Appendix 1, where expressions for the left-inverse of a matrix are derived
in order to justify our choice of condition numbers as a natural measure of sensitivity.

Although we concentrate on component-wise relative errors, expressions for component-wise ab-
solute errors are also included; the corresponding condition numbers can be computed as easily as
those for conventional norm-based errors.

1.3 Summary of Notation

We give a brief summary of frequently used notation for easy reference. This notation is also
introduced in the body of the paper whenever it appears for the first time.

The norm i" - represents the two-norm, and ei stands for the ith column of the identity matrix I,
whose order will be clear from the context. The column space of a matrix A, {c : Az = c}, is
represented by IZ(A) and its nullspace, { : Ax = 01 by Ker(A). The subspace in real n-space R"
that is orthogonal to the space span{vi,..., vk} spanned by n x 1 vectors v1, ... , Vk is denoted by
span, " {vi .... , VO}.

The columns of a n x m matrix A are denoted by ai, and if A is of rank m the rows of its
left-inverse At are denoted by r ,

A-=(at ... amn) At=

The singular value decomposition (SVD) of a n x m matrix A, n > m, is represented as A =
UEV T , where U is a n x n orthogonal matrix, V is a m x m orthogonal matrix, and the mx n diagonal
matrix E has as its diagonal elements the singular values of A in descending order or, > ... > am > 0.
The two-norm condition number of a full-rank matrix A is denoted by x(A) = flAil JfAtI[.

If z solves the least squares problem miny IfAy - b]l then the residual is denoted by r = b - Ax.

2 The Basic Ideas

We start out by illustrating the ideas that led us to pursue a component-wise perturbation analysis;
this is done by studying perturbations in the right-hand side only. We also restrict ourselves to the
solution of full-rank least squares problems until Section 5 where the results are extended to the
solution of underdetermined linear systems of full row rank.

As for notation, 1 1 jj represents the two-norm, and ei stands for the ith column of the identity
matrix I.

2.1 Motivation

The first theorem gives a simple geometric interpretation of the components of the solution x to a
full-rank least squares problem miny IlAy - bfl. An individual solution component can be expressed
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as a product of three factors: the length of a row in the left-inverse At, the length of the right-hand
side and the angle between the two.

Theorem 1 Given a n x m matrix A of rank m, denote by rTi the rows of its left-inverse At,

At = (A T A)-A T =

Then the components zi of the solution x to the least squares problem min, [Ay - b1 are given by

zi = rTb = I1rill IlbII cosfli, 1 < i < m,

where ,i is the angle between ri and b.

Proof. The vector x solves min, hjAy - bjl if and if only it solves the normal equations ATAX = ATb.
So x = Atb, which implies x, = rTb = 11rll hibj) coso3, where 3i is the angle between ri and b. 8

Already in [20] Stewart recognised the importance of the 11rill for the purpose of detecting almost
linearly dependent columns in A. In fact, it turns out that length and angles associated with the ri
indicate the sensitivity of individual components of the solution z to perturbations in the right-hand
side.

Theorem 2 Given a matrix A of full column rank, let z 6 0 solve min ljAy - b[l and let i solve
min , JjAy - (b + f)JI.

Denote by 1'i the angle between ri and f. Then

t = zi + rif = xi + ilrdil 11f11 cos,,.

If zi #6 0 and cb = Ifih/Ilbli then

ii - Zi (6CSIk
Zi 0OS A

Ilbl hlxhI hAIl 1r1l Eb COS '.
-AIIhlxhl xi

Proof- According to Theorem 1,

1i = rT(b + f) = rTb + rTf = xi + rTf = xi + Irdil Ilfl cos ,

where 43i is the angle between ri and f. Since 0 # x1 = rTb = 1ri 1 Ibil cos Oj we have

i - zi rTf 1 lfilcoso,.
Z r rb cosh Jibjl

The theorem states that the absolute perturbation 11f 1 cos O, in ii - zi is amplified by 1Irill. In
the first expression for the relative error, the perturbation cb cos Oi is amplied by 1/cos fi. That
is, the 'more orthogonal' b is to ri, the smaller is cos Oh, and the larger is the amplification of the
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relative perturbation. Therefore, the component-wise relative error is likely to increase, the more
orthogonal ri is to the right-hand side.

Comparing the two amplifiers we see that the amplifier Urill in the absolute error only refers to
the matrix and ignores b, while the amplifier 1/cos3i, in the first expression for the relative error
describes a relationship between the matrix and the right-hand side.

The second expression for the relative error in Theorem 2 is more conventional and perhaps
easier to interpret. It consists of the relative perturbation cb cos i,, amplified by three factors: the
magnitude of z, relative to 11:11; the term hAil lrdil, which describes the condition of the matrix and
will be studied more closely in Section 2.2; and the term - , which is common to all components
and describes the relation between matrix and right-hand side. If we denote by X(A) = JJAfJ lAtj
the condition number of the matrix A then JhAll llrill can be bounded by

1 e7'1 = ll e7'gtA < IleT AtlI IIAII = flAIIl hiall l x(A),

A lower bound for -jfl1 lT, provided z #4 0, is

Ilbl 1 1> 1

IIAII JIxll - IAbII A- - -(A)

In case of a linear system Ax = b,

lbll _ lAzl < 1,
IIAI zll -- IAIl z I I -

otherwise it can be unbounded since b may be almost orthogonal to all rows of At.

Therefore, the component-wise relative error tends to be large for those components xi whose
size is small in comparison to [[xi[, or whose matrix condition number flAIl liril is large, or whose
right-hand side is nearly orthogonal to all rows of At. The three amplification factors in the second
expression for the relative error in Theorem 2 provide a clear separation of the factors responsible
for the loss of accuracy in the computed solution: relative magnitude of the solution components,
matrix condition, and relationship between matrix and right-hand side.

In Sections 3 and 4 we show that the same quantities that determine the sensitivity to right-hand
side perturbations also determine the sensitivity to perturbations in the matrix. First, though, we
relate them to more established ways of measuring sensitivity.

2.2 Relation to Singular Values

The goal of this section is to compare the amplification factors for the usual norm-based errors with
those for our new component-wise errors.

Because the two-norm condition number K(A) = llAll [lAtil equals the ratio of the extreme singu-
lar values of A, we can relate the llrill to the singular values of A and obtain the following well-known
inequalities.

Theorem 3 Let A be a n x m matriz'of rank m with singular values al > ... a> r, > 0, and denote
b! r the rows of At. Then

1 1
Cm a,-<0, am < m -1 <V'm~m.

- iril - k lirkha
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If IIr.m.Il = maxk lirkll then
IIA II I~ l IIA II IIA IIll V / 'IIA II llr .. l-

Proof: The singular values of the left inverse At are 1/,i, Section 5.5.4 in [12], hence 1l, _< Ilr,ll :<
1/ar, giving the first set of inequalities.

Let A = UEV T be the singular value decomposition of A. The last row eT VT of VT is a vector
with unit two-norm in Rm, so at least one of its components, say the jth, must be of magnitude

1/Vm. Hence the jth row rj of At satisfies
1 1

IlrjIl = IlU,(T )-IVTeI = II (LTF)-IVTe I]> e ( - e V- Om

yielding the second set of inequalities.

The last set of inequalities comes from llrma:Il <IlAtI = 1/Urn. a

Applying Theorem 3 to the second expression for the component-wise error in Theorem 2 shows
that there must exist a component iL for which

l- kl > 1 IlbIl K(A)- cbI cosiPLkI.
Iz k - ./m hIAIJlzl l cx sz I "

Therefore, the sensitivity of zk to right-hand side perturbations is proportional to the condition

number of A whenever the right-hand side has an appropriate direction, that is, whenever

is not too small

We briefly take a closer look at this last condition. When Ax = b and b is a singular vector
associated with the smallest singular value am of A, hlAtbl[/llbll = 1/orn = hAtlh, then

l I and lI!Il I I ll lA] rill =I f <l LIIAII 11 l =  (A) ' Iand II II Il-- --- ll < 1

According to the expressions for the errors in Theorem 2, the sensitvity of all solution components
to right-hand side perturbations is then solely determined by their relative magnitude.

The existence of a row of At wbose norm approximates 1/arn well, as evidenced by Theorem 3,
underlies the rank-revealing QR factorisations, which first appeared in [11, 13], and are further
analysed and refined in [20, 10, 6, 21]. In the simplest case, the goal of a rank-revealing QR
factorisation is to determine the most linearly dependent column of a matrix A. To this end one
performs the QR factorisation AP = QR, where Q has orthonormal columns, R is upper triangular
and the permutation matrix P is chosen so as to minimise the trailing diagonal element (R)m, of R.
Then the inverse of this element, 1/l(R)mmI = IleTR-'ll = lrhl 1, is as large as possible, and thus
close to 1/rn.

While Theorem 3 states that at least one ir 11 approximates the smallest singular value well, the
following corollary indicates that each hirill cannot stray too far away from some singular value.

Theorem 4 Let A 6e a n x m matrix of rank m with singular values u1 > ... > am > 0, and let

IIAIIF = a., denote the Frobenius norm of A.
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If the Ilr,jI are ordered by increasing norm, lrj1 , .. IIr,.,I then

m 1 1 k
-- IIAtI< + . + 1 < k < m- 1.

Proof. The equality results from the invariance of the Frobenius norm under orthogonal transfor-
mations, Section 2.5.3 in [12].

The inequalities are obtained by applying the proof of Theorem 4.3.26 in [17] to the singular
values of At. N

Remark I It is important to realise that the looseness of the inequalities in Theorem 3 depends on
how close the right singular vector matrix of A is to a permutation matrix: if A = UEV T is the
SVD of A then

IIrI = IIUE(ET E)-1 VTe,II = IIE(ETE)- 1VTeII.

Thus, if V is a permutation matrix (this includes diagonal matrices) then we can find indices that
achieve the bounds in Theorem 3 since Ilrill = 1/o for some k.

2.3 Conventional Error Bounds

In this section we present a rather unconventional way of deriving bounds on the norm-based relative
error, by making use of the theorems from the previous sections.

An expression for the absolute norm-based error in the infinity-norm is available from Theorem 2,

III - 1 = max {Ilr,It 111 Icos i}.

Dividing this by IIII results in a mixed-norm relative error

II -- _ fAx lm Ilril IlbIl ebICO il}
II ll IIAII # 1 o

where Cb = IlfIII/Ibll. Denoting by ic(A) = IhAIl IIAtlI the condition number of A, we obtain an upper
bound for the norm-based relative error from Theorem 3,

IIz - - Zxj < v/IR(A) IIAII eb.
fIzil lilI hJAil hIzhl

In case of a linear system Ax - b, Ilbll < IlaII IilxI and the bound simplifies to

II - zl_._ _ < v' ,i(A)cb.

In this last form, the upper bound agrees with the conventional bounds. Its amplification factor for
the perturbations consists of the condition number K(A) of the matrix but ignores the relationship
between matrix and right-hand side.

Theorem 3 also comes in handy for the derivation of the lower bound

-z[- = max {1AII llbl_11 cbl coskil} >! L (A) Ilt (b/,

I111II -- I t IJA II I1x I1 - 'r

I I Iln l ln un nu mmuil l~~~iiluull lmn l m w - - -- -'8-



a1  spank {aL

ZL = S pank#, {ak)

Figure 1: Angles Associated with Columns.

where p = maxi{1,111riI cos ,,I}/ max lirkll.

To summarise, we have derived lower and upper bounds on the norm-wise relative error for
perturbations restricted to the right-hand side,

I fc(A) Ilbll I1P - xll < - c(A) libll7 (A) IIA Ill-- -- --11 , _ Illll -IIAI ll "

In the absence of knowledge about the value of cos Oi we have to assume the worst case y = 1, which
implies that the norm-based error bound is tight. Therefore the conventional upper bounds are as
good as possible - given that one has chosen to measure a norm-based error. We have therefore
shown that, if the norm-wise bounds give unsatisfying information, it is not because the bounds are
loose but rather because an unsatisfying way of measuring the error was adopted in the first place.

When Ax = b and b is a singular vector associated with the smallest singular value grn of A,
IAtbii/llbi = l/oU = hlAtll, then IhAII hlil/hlbl = x(A) and

< liz!--4 -
In this special case the norm-wise relative error is of about the same magnitude as the perturbation
in the right-hand side and does not depend on the condition number of A, an observation already
made by Chan and Foulser (7].

2.4 Geometric Interpretation

We have seen so far that individual components of the solution z to a full-rank least squares problem
min, IhAy - bl can be expressed as zi = lril hlbll cosi, where rT is the ith row of At and A3 is the
angle between ri and b; that lirill and 1/cos3i determine the sensitivity of xi to perturbations in b;
and that at least one 1/llrjll approximates the smallest singular value of A well.

Now we want to give a geometric interpretation of the ilrill in terms of the columns in the original
matrix A. This will allow us to determine how exactly the linear independence of the columns of A
and their relationship to b affects the sensitivity of individual solution components to perturbations.

As for notation, the column space of a matrix A is represented by "Z(A) and its nulhpace by
Ker(A). The subspace in real n-space R' that is orthogonal to the space span{vx, . . ., vk spanned
by n x 1 vectors vj, ... , vk is denoted by span,{vi,.. .,v}.

We first show that the size of the Ilril reflects the linear dependence of the ith column of A on
all others.

9



Theorem 5 Given a n x m matriz A of rank m, denote by ai its columns, and by rT the rows of

its left-inverse At,

A=(a, ... an), At =(AA)-A T = "

Then IZ((At)T) = JZ(A) and

P il[ l ai o a ' 1 < i < m ,
e1i11Cs a,'

where -jT < o, < 17r is the a.igle between ri and ai.

Proof: Because A has full column rank, AT A is non-singular, and Ax = A(ATA)-lz (At)Tz,
where z = ATAz, which implies that IZ((At)T) = R(A).

The ith diagonal element of I = AtA satisfies 1 = rTai -= j1ril IaiJ cosai, where ai is the angle
between ri and ai. Hence cosa, > 0, so -I r < ai < , and i1rill = 1

Because eT = rTA, ri is orthogonal to all columns of A except for ai, that is ri E span' i {ak},
see Figure 1. Theorem 11 and Corollary 5 of Appendix 1 show that the ith row rT of At has the
same direction as the residual in the least squares approximation of column ai by the remaining
columns: if A, contains all columns of A except for ai then

T 1 1_I i
ri = e~A1 =aill cosai Ijai ,

where -di = Aiz-ai is the residual for the solution z to the least squares problem miny IAiy - aill.
In other words, dii is the projection of ai onto the orthogonal complement of iZ(Ai), and r i has the
same direction as i.

With regard to the length of ri, it follows that

T1r I = _ I

This means, the better the remaining columns A approximate ai the smaller is the residual II ill
and the larger is lfrill. That is, the more linearly dependent ai is on the other columns, the larger
is tlrill.

The relationship between the length of r i and the norm of the residual is already known. In [21]
Stewart uses a different argument to show that

1
lhil = minJAiy - aiJl =

Our contribution here is to provide more justification for the choice of ri as an indicator of sensitivity.
Because ri is a multiple of the residual iii, the residual is inherent in A -.nd thus represents a most
natural choice for sensitivity measure.

Our veometric interprtation of the rows of the left-inverse justifies the use of rank-revealing QR
factorisat ons to determine the most linearly dependent column of a matrix. If the permutation
matrix P for the QR factorisation AP = QR is chosen so that the trailing diagonal element J(R)innI
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of R is minimal, then the residual x/1rTjl1 = XljeTR-lI = I(R).lI is minimal. This implies that
the last column of AP is the column that can be best approximated by all other columns and so is
the most linearly dependent among all columns.

The individual components of the solution x to a least squares problem min, fjAy - bli can be

expressed as
zi = 11ill 1I Ibli cosfli = 11bil coosfl

il, l cos ti',

The denominator of zi indicates the linear dependence of column ai on all others, while the numerator
indicates the contribution of the right-hand side b in spanki{ak}. In detail, for fixed b, the smaller
the contribution of a, outside the space spanned by the other columns, the larger is zi. Or, the
smaller the contribution of ai outside the space spanned by the other columns, the more xi has to
make up for the weakness of ai in the direction spanki{ak}. Moreover, the shorter ai is, the larger
zi has to be because it has to make up for the shortness of aj.

We can also apply the geometric interpretations to the errors resulting from perturbations f in
the right-hand side. The expression for the absolute error from Theorem 2,

if = 11f11cosi11-x,=Iai ll cosa,'

contains a large amplification factor if column a, is short or lies almost in the space spanned
by the other columns. The relative error

e C bosz I
Zi  Cos fli

contains a large amplification factor 1/cos/3i if b lies almost in the space spanned by the other
columns or in Ker(A T ) = Ker(A t) (in the latter case the right-hand side of the normal equations is
zero). Note that the amplification factor for the absolute error only reflects the linear independence
of the matrix columns, yet ignores their relation to the right-hand side.

2.5 Implications for Column Scaling

A diagonal column scaling D of the least squares problem min, IAy- bil to min, JI(AD)z - b[I, where
D = (dij) is a non-singular diagonal matrix, changes only the lengths of the columns but not the
angles, so

I=lblI cosO!1i dai 11 cos a"

In case of a column equilibrated matrix AD, Section 3.5.2 in [121, and [24, 251, where the diagonal
matrix D is chosen so that all columns of AD have identical length, the condition number of AD
comes from the largest angle Cma. of A, as

I_ <_ 1IAD11 Jj( AD)tjl < -5
Cos a m"z- Cos a mar

according to Theorem 3. This bound already appeared in a different form in [21].

Van der Sluis has shown that a column equilibrated matrix A has the lowest condition number
among all matrices of the form AD [24]. This would suggest that one solve only linear systems and
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least squares problems with column equilibrated matrices so as to minimise the condition number
in Iin- x__ < vr;(; ) Ilbll b.

11[ A I-zII j Eb.j

However, the condition number occurs in an upper bound!

An examination of the first expression for the component-wise relative error in Theorem 2 shows
that none of the angles change when the columns of A are multiplied by non-zero scalars. In
particular, if we consider instead the system (AD)z = b, where z = D-x, then the computed
solution . satisfies a perturbed system ADi = b + g. Postmultiplication of A by D corresponds to
premultiplication of At by D- 1 , which changes only the lengths of the rows rT in A t but preserves
the angles fi between b and r,. Hence the amplification factor 1/cosf6i remains invariant under
column scaling.

Therefore, if perturbations are restricted to the right-hand side, then column scaling is only
beneficial if it manages to decrease the relative perturbations Cb cos 10i in the component-wise relative
error (this could occur, for instance, if column scaling brings about a different choice of pivots in
Gaussian elimination).

2.6 Summary

The main result of Section 2 is the pair of expressions for the component-wise relative errors in a
full-rank least squares problem when perturbations are restricted to the right-hand side (Theorem 2).

Suppose z # 0 solves the least squares problem min% hAy - bl, and i solves the corresponding
problem miny JjAy - (b + f)1 with a perturbed right-hand side. The relative error in an individual
component of i can be expressed as

- - b COS Oi

where )i is the angle between b and the ith row of At, 10i is angle between f and the ith row of At , and
eb = IIIU/hibil- Thus, the component-wise relative error consists of a relative perturbation (b cos Oi,
amplified by I/ cosfi6. This amplification factor is large if b is almost orthogonal to the ith row
of A t ; that is, if b lies almost in the space spanned by the other columns or in Ker(A T ) = Ker(At).

Because fli depends only on the direction but not the length of the ith row of At, column scaling
of A is only beneficial if it manages to decrease the relative perturbations eb cos ?P.

We also gave a second expression for the relative error

ii - Zi jIIbj j - j-IIl r1I Lb cos i,,

which provides a clear separation of the factors responsible for the loss of accuracy in the computed
solution: relative magnitude of the solution components IlIjI/jx; matrix condition IAII lirill; and

relationship between matrix and right-hand side wher IA = Ai
matrix condition number. In case of a linear system Ax = b,

IlbH IAx <1,
hAIIII 11 II Ixll

otherwise there is no bound as b may be almost orthogonal to all rows of A t.

12



The component-wise relative error tends to be large for those components xi whose size is small
in comparison to lizij, or whose matrix condition number 1hAil Ilrill is large, or whose right-hand side
is nearly orthogonal to all rows of At. Moreover, Theorem 3 shows that there must be at least one
component ik for which IAil I rkj >I ,(A)/V /. In the special case when Ax = b and b is a singular
vector associated with the smallest singular value of A,

116b1 1 andlbll III lllrill < 1,IIA II l - 1A and IIAII /Ill -t 1

and the sensitvity of all solution components to right-hand side perturbations is solely determined
by their relative magnitude.

In the next section we derive expressions for component-wise relative errors when perturbations
in the matrix are also allowed. For simplicity we start with linear systems, and consider least squares
problems separately in the subsequent section.

3 Perturbation Results for Linear Systems

We derive expressions for component-wise errors in a linear system of full column rank when both
matrix and right-hand side are perturbed. From these expressions we derive component-wise condi-
tion numbers for the individual components of the solution. The expressions for the component-wise
errors are used in turn to derive upper bounds for the norm-based errors that are essentially equal to
the conventional upper bounds. We conclude that the norm-based bounds are as tight as possible.
If they turn out to be pessimistic then this is because one has chosen to measure the norm of the
error instead of the error in individual components.

3.1 Component-Wise Errors

A computed solution i to a linear system Ax = b can be viewed as the exact solution to a perturbed
system (A + F)i = b + f. We will determine how the error in the components of i is affected by
the perturbations F and f.

The first theorem investigates the effect of perturbations in the matrix.

Theorem 6 Given a matrix A of full column rank and b :A 0 such that Ax = b, let the computed
solution i 0 0 satisfy (A + F)i = b.

Denote by 0i the angle between ri and Fi. Then

IIFlhI cos l¢i
lah Icosai

If xi # 0 and (A = then

ii - 1 I IF llCos 0

Xi cos 11 ib

=_ _11411 ilah CA cos 4'i.
Zi
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Proof. In Theorem 2 we set f = -Fi to get

COS 1161"1~ l~'

i 11Fill cos tki
= z laillcosa"

Dividing the whole equation by xi gives the expressions for the component-wise relative error.

The first expression for the component-wise error says that the more b lies in span.- ,{ak}, the
more sensitive is zi to relative perturbations. However a large 1/ cos fli does not necessarily imply
that b has little contribution in aj. In fact, if b = a, and 1/ cosa, is large then 1/ cos)3i will also be
large - in this case cosf6 reflects the linear dependence of the columns of A.

We interpret the second expression for the component-wise relative error in Theorem 6 as follows:
the first term, IzI/ z, represents the relative magnitude of zi; the second term, IlAll hlrdll =
represents the linear dependence of the ith column of A on all other columns; and the last term
CA cos ti represents a relative perturbation for the matrix in the context of the given linear system.
The component-wise relative error tends to be large for those components zi whose size is small in
comparison to jjijj, or whose associated column is short in length or nearly linearly dependent on
the other columns. The two amplification factors in the second expression for the relative error in
Theorem 6 provide a clear separation of the factors responsible for loss of accuracy in the computed
solution: relative magnitude of solution components and linear dependence of matrix columns.

In comparison to the error from right-hand side perturbations in Theorem 2, the error from matrix
perturbations in Theorem 6 does not contain the term FAU1' which describes the relationship
between matrix and right-hand side. According to Theorem 3 we conclude that there always exists
a component zj, whose sensitivity to relative perturbations in the matrix is on the order of ic(A).
This is in contrast to right-hand side perturbations, where b has to lie in a certain direction for the
sensitivity to be proportional to the condition number.

Before resolving this apparent contradiction (in particular, whea the perturbations are due to
backward errors from algorithms, which can be shuffled back and forth between matrix and right-
hand side), we first give an expression for the component-wise relative error for a linear system when
matrix and right-hand side are perturbed simultaneously.

Corollary 1 Given a matrix A of full column rank, and b A 0 such that Ax = b. Let 2 6 0 satisfy
(A + F)i = b+ f.

Denote by Opp the angle between ri and Fi, and by Of,j the angle between r and f. Then

Ilf cos O',i - IIFill cos O,,
Jlaill cos aS

If #i 0 0 and

1= Ti A- A = IJAII[itll

hen

-ilbhh co- X [1IFt cos OF, - Ilfll cos O,,i]
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_ i4l IIAI lIrilI CA COS - IIl Eb cos 101,i
Zi ICf III 21

The second expression for the relative error allows us to state that, in general, for every linear
system there exists a solution component whose sensitivity is proportional to the condition number,
because the term that could avoid this, ]% , multiplies only the right-hand side perturbations
but not the matrix perturbations. In addition, the following theorem shows that for any t A 0 the
perturbations can always be allocated to the matrix.

The following theorem helps to resolve the discrepancies in the r6les of right-hand side and matrix
perturbations. It also justifies the representation of the matrix perturbation in the form CA = AM2.

The bounds on the norm-based relative error [12, 23], usually contain the term PA = IIFII/IlAII as
the representative for the matrix perturbation. But CA !5 PA and, as it turns out, CA constitutes the
smallest possible matrix perturbation.

Theorem 7 Given a matrix A of full column rank and b i 0 such that Ax = b, and a computed
solution i 0 0, let Fmin be the perturbation of smallest Frobenius norm among all perturbations F
that satisfy (A + F).i b (Fmn also has smallest two-norm among all such perturbations).

If xi $ 0 and Cin IIFminII/lAII then

2i- xi IAIIIIfI 1
- _f ' S_ min COs V i,,IlbII cos/i

where 'ki is the angle between Fmini and ri.

If Cr. = lib - AiIl/lbll is the relative residual then

- Ilbll _ I 11 ll IIXll
Cmin IAi1l , rea, ic(A) f ic s- < - "i P

Proof: If f = b - Ai is the residual then Fmin is given by, [18] and Theorem 111.2.16 in [23],

Fmin - T

and satisfies

f = -Fmi n and IIFmi,I = H ,

where the second equality comes about because Fmi has rank one. Substituting Ilfil = IIFi.II I1I1i
into the first expression for the component-wise relative error from Theorem 2 yields the expression
for the error.

The relation between Cmi, and c.eo comes about as fr.8 = flf l/ilbll and IIFm.inl = If11/l11l. E

The proof of Theorem 7 makes clear that, given Az = b and i, the smallest matrix perturbation
satisfies

(A + Fmin)i = b, mn = -i.A 1 =  IAil1

which is exactly the matrix perturbation CA in Theorem 6.
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Moreover, for a given computed solution t one can define two perturbations: the minimal matrix
perturbation min; and the relative residual ,,, which reflects the relationship between matrix and
right-hand side. If the magnitude of the computed solution is not totally off, i.e. if IjzI =z II ll, then
(min is of the same order of magnitude or smaller than ,e,. According to Sections 2.1 and 2.2, gre,

is much larger than ,n,, whenever b lies nearly in the direction of a singular vector associated with
the smallest singular value of A (provided the directions of z and t are not too different).

Regarding the interpretation of error bounds and the determination of amplification factors, one
must therefore be careful about deciding whether to allocate the perturbations to the matrix or
to the right-hand side. We continue this discussion in the context of norm-wise error bounds in
Section 3.4.

In Theorem 7 the relative errors in the different components differ only in cos i/cosoi, while
the term jjAII IlIll/IlbIl is common to all components. Because 1/ cos'3i > 1,

J~i- z' hJAil 11211£- il > jjAjj ,[l fmi. ICOS bi 1,
Izll - EmilbllI

so all components of z are sensitive to matrix perturbations if V1AIl II ll/lbll is large. In particular,
if b lies along the direction of a singular vector associated with the smallest singular value of A
then 1hAII ill/llbll . ic(A). Together with the results from Section 2.3 this implies that the solution
components are extremely sensitive to matrix perturbations exactly when they are insensitive to
right-hand side perturbations.

The expressions for the component-wise errors in this section contain not only the data A and b,
but also the result i. In Appendix 2 we show how to express the relative errors entirely in terms of
the data; although the perturbations take a slightly different form, the magnification factors for the
perturbations continue to be 1 / cos ai and 1 / cos #i.

3.2 Examples

Now we give two examples to illustrate the previous results. The first example demonstrates that a
matrix with perfectly conditioned columns may give rise to a linear system with extremely sensitive
solution components.

Example 1 If A is an orthogonal matrix then - = 1 and, according to Theorem 6, fl1fl/xi
is the sole term responsible for error magnification. Thus, as we already know from the norm-wise
bounds, a solution vector with small as well as large components suffers from large error amplification
in the small components.

This also comes out if we consider instead the angles

1 1 1 =ilil 1 1
cosao lacos, Cos30, zi Ilb l cosi zi

where the next to last equality comes about because 11611 = 11il1.

In contrast to the first example, the second one shows that even a very ill-conditioned matrix
may have robust solution components. It is a generalisation of the example presented in Section 1.1.
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Example 2 Consider a 4 x4 orthogonal matrix A = (a, a2  a3  a4 ) and define a one-parameter
family of matrices by

A(A) = (al a2  a3  VI+A (a3+a4)).

We see that A(O) = A, a well-conditioned matrix, and that A(o) is a singular matrix. For all A,
IIA(A)II < 2. When A < oo, the inverse is given by

a T
rA(A)I-l = a r

L~~aT oAaT
/1 + A2aT

from which we can compute

cos c1 = Ilail Cos1 cos a 2 = ila211cosa 2 = 1
CosC 3 = jjaal cos( 3 ) = cosa 4 = jja 411cos(a 4)= 71M"A

Thus as A - 00 the matrix A(A) becomes increasingly singular. Its condition number behaves like
O(A). Note that the matrix A(A) is column equlibrated, so the ill-conditioning is a result of small
angles rather than short columns.

Consider a linear system A(A)x(A) = b, where the right-hand side is independent of A and can
be represented as b = r1a, + r2 a2 + r3a3 + r4 a4 . Then

cos l =I coI 2 cos3a= r3 - At4 cos r4 =ITSO' =o -L - C O I0 2 C O S ,6 3 C OS"4 "4 =

The solution vector is given by

(A) -- (r, 2 r 3 -A Ar4  V/i" +A 2r4 )T.

The values of z, and X2 are independent of A, and so are Ilaillcosaj and cosj forj = 1,2. So the
sensitivity of the components zx and z 2 depends solely on their size relative to z. If, for instance,
I zil > Ix for i : 1 then Corollary I says that the error in xl is not amplified - independent of the
values of A and the condition number of A(A).

3.3 Condition Numbers and Column Scaling

For a linear system Ax = b with full-rank coefficient matrix A and non-zero right-hand side b,
Corollary 1 presents two different expressions for the component-wise relative error in the computed
solution 2: suppose i # 0 satisfies (A + F)2 = b + f, and

C = Ilbl A = IAII i

then

.ti - Zi1 - 1O [SFi cosF, - Ilfhl cos Of,i]
tlblll cosl,

- Pit JAIl rill A COS IbI C6 COS01
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Sections 2.2 and 3.1 explain that under certain circumstances the factor 1 causes the sensi-
tivity of large solution components to right-hand side perturbations to be independent of matrix
conditioning. We now ignore J61 because it does not affect the sensitivity of the solution to
perturbations in the matrix.

The term IhAII hri = IAII JieTAthl < IhAII IAtl represents a condition number 'restricted to' xi.
Already in 1970 van der Sluis [25, 26] realised the need to distinguish the conditioning of individual
components of x and the fact that the conditioning depends on the relative size of a component. He
introduces the notion of 'ith column condition number of A', IIA-h1 Iladll, and derives the similar
looking norm-wise relative error bound (here f = 0)

i - X11< 11F11 IIA-',1 all 1x"
JJx- - "11 hia

He also acknowledges the importance of angles on the conditioning of the matrix: if each column
is well separated from the space spanned by the other columns then the solution components are
likely to be insensitive to perturbations, page 251 in [26].

According to van der Sluis's bounds one naturally concludes that column equilibrated matrices
(all of whose columns have identical norm) should give rise to solution components with identical
sensitivity to perturbations. Yet, the amplification factor in the first expression for the
component-wise relative error is independent of column scaling. So essentially the conclusions of
Section 2.5 remain valid when, in addition to the right-hand side, the matrix is also perturbed: the
component-wise relative error decreases under column scaling only if column scaling manages to
reduce the perturbation IIFtl cos ?ki - 1[f1 cos ikj,i. Note that we could have also expressed the
error as

iO --at -1 [!!FiI OS O.c,- b COS Ofi

Z, - cosfli L Ibli
in which case the amplification factors for the relative perturbations JiFiIi/Ihbih and cb remain invari-
ant under column scaling. However, when f = 0 we know from Theorem 7 that

IF iI - IIb - Atll = IIAII i11ihlb'I -" l-bhl - ib A,

where IhAII IIIII/llbl can be as large as (A). This means that the perturbation iIIFtl/llbll may be
proportional to the condition number of the matrix. Finally, Lemma 1 of Appendix 2 states that
the amplification factors for the error (i - xi)/ati remain invariant under column scaling when
perturbations are restricted to column i of the matrix.

Although the amplification factors in the second expression for the error above do change under
column scaling, they have the advantage of representing easily computable a posteriori error esti-
mates: we show in Section 6 how to estimate IAIl Ihrdl efficiently with available condition number
estimators.

Due to the deliberations in this and the previous sections we feel justified in introducing a new
set of condition numbers.

Definition 1 Let Ax = b be a linear system with n x m matrix A of rank m and b # 0, and let
1 4 0 be the computed solution. Denote by rT = eTAt the ith row of the left-inverse of A and by 3i
the angle between b and ri, 1 < i < m.

The quantities

h1. IIAII iIri, 1 < i <m,1xil,
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